Deux mathématiciens viennent de prouver que deux infinis étaient égaux, et c'est une révolution

Par kibaru

Même si vous n'avez pas fait d'études de maths (c'est votre droit), vous allez comprendre pourquoi cette découverte pourrait se voir décerner la médaille Fields.

Ce qui est fascinant avec les mathématiques, c'est que même les concepts les plus connus et apparemment les plus simples peuvent continuer à susciter la fascination et à créer l'événement.

La démonstration que la mathématicienne américaine Maryanthe Malliaris et son homologue israélien Saharon Shelah viennent de publier, qui prouve que deux ensembles mathématiques infinis ont la même taille, était attendue depuis près de 70 ans. Pourtant, elle concerne des nombres connus de tous.

Le premier de ces deux ensembles s'appelle N: c'est l'ensemble des entiers naturels, c'est-à-dire 0, 1, 2, 3, et tous les nombres entiers qui suivent. Nul besoin d'être Cédric Villani pour comprendre que cet ensemble est infini.

Le second s'appelle R: c'est l'ensemble des nombres réels, c'est-à-dire tous les nombres que vous connaissez, ceux de la vie réelle. Il inclut les nombres entiers, les nombres décimaux, les nombres rationnels (ceux qui peuvent s'écrire comme des fractions), et même les nombres irrationnels (ceux que l'on ne peut pas écrire comme des fractions, le plus célèbre étant le fameux pi). De -19 à 172,38273601 en passant par 1/3 et pi, tous les nombres sont réels. Et il y en a évidemment une infinité (le «évidemment» ayant été prouvé).

L'une des différences majeures entre les deux ensembles, c'est que si N est un ensemble dit dénombrable (on peut en lister les éléments, même si cette liste serait certes infinie), ce n'est pas le cas de R, comme le prouva le mathématicien allemand Georg Cantor à la fin du XIXè siècle. Pour le dire plus trivialement, on ne peut pas lister les éléments de R: il y en a "trop". C'est un ensemble continu, c'est-à-dire qu'il n'y a pas un nombre, puis le suivant: on peut toujours en trouver un qui se trouve compris entre les deux.

Pour montrer que des ensembles sont de même taille, on établit un jeu de correspondances entre leurs éléments. Comme l'explique cet article de Quanta Magazine, pour montrer qu'un ensemble de voitures et un ensemble de conductrices sont de même taille, il suffit d'attribuer une voiture (et une seule) à chaque conductrice, puis de vérifier qu'il ne reste aucun conducteur sans voiture ni aucune voiture sans conducteur. Ce principe fonctionne exactement de la même façon avec les ensembles infinis.

Cantor a par exemple démontré que N était de même taille que l'ensemble des entiers pairs. Il suffit pour cela de «numéroter» les nombres pairs: 0 est le zéroième, 2 le premier, 4 le deuxième, etc.

entiers naturels

0

1

2

3

4

entiers pairs

0

2

4

6

8

 Chaque entier pair étant relié de cette façon à un et un seul entier naturel, le principe des automobiles et des conductrices est respecté, ce qui montre que l'ensemble des entiers naturels et l'ensemble des entiers pairs est de même taille. Pas simple à accepter lorsque les ensembles infinis ne vous sont pas familiers: on a l'impression qu'il y a deux fois plus de nombres entiers que de nombres pairs, ce qui n'est vrai que si on considère un ensemble fini de nombres (par exemple c'est vrai si on ne considère que l'ensemble des nombres de 1 à 10).

Cantor a permis d'aplanir les choses. Il y avait au moins deux sortes d'infinis: l'infini dénombrable (celui de N, de l'ensemble des nombres pairs, etc.) et l'infini indénombrable (comme celui de R). La question qui planait depuis environ 70 ans était la suivante: y avait-il d'autres types d'infinis entre ces deux grandes catégories? Des sortes d'infinis intermédiaires? Cette propriété, nommée hypothèse du continu, est la première des 23 problèmes présentés par le mathématicien David Hilbert en 1900 comme tenant en échec le monde des mathématiques. Malliaris et Shelah n’ont pas démontrée cette propriété, dont les mathématiciens Godel et Cohen ont montré qu’elle était impossible à démontrer… ainsi que la propriété contraire.

C’est donc un fait, on ne saura jamais s’il existe d’autres types d’infinis entre le dénombrable (celui de N) et l’indénombrable (celui de R).

En revanche, Maryanthe Malliaris et Saharon Shelah sont parvenus à montrer que les nombres p et t (habituellement écrits en lettres gothiques) étaient égaux. Qui sont p et t? Quanta Magazine tente de résumer la signification de chacun de ces nombres bien connus en théorie des ensembles. Bon, ça se complique, vous pouvez aussi passer au paragraphe suivant. p est le plus petit nombre de sous-ensembles infinis de tel que l'intersection de chacun de ces ensembles ne soit pas vide et tel qu'il n'y ait pas de pseudo-intersection (famille d'ensembles de N tels que chaque élément de la famille est constitué de tous les entiers naturels sauf un nombre fini d'entre eux). Oui, c'est extrêmement compliqué.

Ou encore au suivant. Quant à t, il s'agit du plus petit nombre de sous-ensembles de N qui puisse être ordonné tel que les uns soient inclus dans les autres, le tout sans pseudo-intersection non plus. À ce stade, il n'est pas interdit d'avoir décroché, à moins d'aspirer à la médaille Fields.

Toujours est-il qu’en prouvant que p et t étaient égaux (alors que beaucoup imaginaient que p était inférieur à t), Malliaris et Shelah n’ont pas montré que l’infini de N et celui de R étaient égaux (ce qui est faux), mais que le nombre éventuel d’intermédiaires entre les deux était sans doute beaucoup plus réduit que prévu. En effet, on savait jusque là que le cardinal de N était strictement plus petit que p, lui-même inférieur (ou égal) à t, le tout étant strictement plus petit que le cardinal de R. Prouver l’égalité p=t, c’est resserrer les liens entre le dénombrable et l’indénombrable, ce qui constitue une avancée gigantesque vers un objectif inatteignable en raison de l’indécidabilité de l’hypothèse du continu. Et si Sharon Shelah a dépassé l’âge limite (40 ans) pour recevoir la prochaine médaille Fields, qui sera remise au cours de l’été 2018, sa collaboratrice Maryanthe Malliaris semble tout à fait susceptible d’y aspirer.

Slate